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We present numerical studies of an on-lattice many-walker diffusion-limited aggregation model.
For asymptotic late stage growth, the ensemble averaged envelope exhibits a convex to concave
transition. This transition resembles morphology transitions in other diffusion-limited systems but
we do not detect a change in the functional form of the growth velocity. We also find that the
distribution of the segment lengths is invariant under changes of the supersaturation.

PACS number(s): 64.60.Qb, 05.70.Ln, 64.70.Hz, 02.70.Rw

In the past few years, studies of diffusive pattern-
ing [1-3] have focused on morphology selection and mor-
phological properties [3—-10]. It has been proposed that
all observed patterns can be grouped into a small set of
“essential shapes” or morphologies [4], each having its
own characteristic geometric features. Motivated by ex-
perimental observations in the Hele-Shaw cell, Ben-Jacob
et al. [4] proposed the existence of a morphology deter-
mination principle: In the presence of anisotropy, both
tip-splitting and dendritic solutions exist, but the fastest
growing solution is the dynamically selected one. In gen-
eral, if more than one morphology is a possible solution,
only the fastest growing one is globally stable and hence
will be observed. The existence of a morphology selec-
tion principle would imply the existence of a morphology
diagram (analogous to phase diagrams in equilibrium).

In processes like solidification [11], electrochemical de-
position [12,13], growth of bacterial colonies [14,15], and
others, different shapes are observed for different values
of the control parameter (e.g., undercooling, supersatu-
ration, etc.). The observation of various shapes is a nec-
essary, but not a sufficient condition, for the existence
of morphology selection. The change in shape could be
a crossover rather than a transition. That is, for each
value of the driving force a unique solution (shape) exists.
The space of control parameters could still be divided
according to some classification of the observed patterns.
However, in this case the boundaries between different
regimes would be fuzzy, and with no sharp transitions as
the boundaries are crossed (by varying the growth pa-
rameters). The second possibility is that more than one
morphology is a possible solution, but only one solution
is dynamically selected [3]. In that case, sharp transitions
(morphology transitions) are predicted upon crossing the
boundaries. Note that by “sharp transitions” we consider
simultaneous change of many of the pattern’s properties
such as growth velocity, branch width, correlation func-
tions, etc.

The noise, inherent in experimental systems far from
equilibrium, makes the distinction between a sharp
crossover and a smeared transition unpractical. At
present, morphology diagrams have been constructed for
a variety of experimental systems [12,13,16-19]. These
findings, while supportive, are yet not a clear answer
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regarding the questions of transition versus crossover.
Additional support for a morphology transition is the
demonstration of coexistence of morphologies [6]. As a
step to distinguish between a transition and a crossover,
it was proposed [4] to correlate the change in shape with
changes in dynamical response functions, for example the
(average) growth velocity. Indeed, both discontinuities,
and changes in the slope of the velocity (as a function
of the driving force) were observed in experimental sys-
tems upon crossing the boundaries between morpholo-
gies [3,4,12,13,20]. The above principle was also used as
a base for a theoretical approach of morphology transi-
tions (8].

Recently, a correlation between the patterns and a ge-
ometrical characterization was found using the diffusion-
transition model [5] inspired by solidification from su-
persaturated solution. An envelope of the pattern was
defined and found to be shape preserving and to propa-
gate at constant velocity. A change in the shape of the
growing pattern which was first detected by “artistic”
view was characterized as the simultaneous occurrence of
(1) a change in the scaling of the growth velocity, and (2)
a change of the envelope shape from convex to concave.
This convex to concave transition was found also in ex-
periments of liquid crystals [19], for a mean-field model
of many-walker diffusion-limited aggregation (DLA) [7],
for the phase-field model [10], and for experiments and
simulations of growth of bacterial colonies [21].

Since its construction in 1981, the Witten and Sander
DLA model [22] started a new active field of research [23].
Its simplicity in formulation and nontrivial asymptotic
behavior made it one of the most studied and canonical
models of nonequilibrium processes. The high level of
noise and in addition a clear asymptotic behavior made
it an example of the “victory” of the dynamics over the
noise. Can we find morphology transitions in a simple
derivative of the DLA model? For such a study, we need
the possibility to vary a thermodynamic force and to ob-
serve the response of the system to such changes. As the
thermodynamic force in DLA (the difference between the
chemical potential of the cluster and of the walkers) is in-
finity (since there is no equilibrium concentration of walk-
ers [24]), we choose to work on many-walker DLA [25-27].
Here we vary the supersaturation, and study the response
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FIG. 1. Two realizations of the many-walker DLA cluster. (a) A = 0.35 and the number of particles is 118 544. (b) A = 0.05

and the number of particles is 174 331.

of the growth pattern and specifically the envelope and
the growth velocity.

Several models for many-walker DLA were stud-
ied [25-27], mainly for channel geometry. We use here
an extension of the original Witten and Sander [22] DLA
model, for many walkers which move simultaneously.
The “atoms” are inside a squared box, each performing
a random walk on a square lattice until it lands on a site
next to the aggregate and is added to it. In order to set
the diffusion constant to be unity, the lattice constant is
set to unity and, during each cycle, each atom moves four
times. Initially the aggregate contains one atom in the
middle of the box, and random walkers are spread ran-
domly inside the box with uniform density A. The box
size is chosen to be larger than the decay length of the
diffusion field. [As explained by Uwaha and Saito [25],
the asymptotic growth velocity is related to a character-
istic correlation length (the diffusion length) £ = 1/v.]
Note that two or more atoms may have the same coordi-
nates, however, the results do not change qualitatively if
the atoms are treated as avoiding walkers.

In Fig. 1 we show two clusters which were grown for
two different levels of supersaturation. For high super-
saturation [Fig. 1(a)], the macroscopic pattern is similar
to a compact Eden-like [28] structure with additional de-
tails on the mesoscale (branches level) organization. For
lower supersaturation [Fig. 1(b)], the structure is less
dense and the fourfold symmetry is more pronounced.
Note that a concave shape of anisotropic DLA (i.e., in
the limit A — 0) is familiar from the work of Meakin et
al. [29].

Next we look for a geometrical characterization of the
growing patterns using their envelopes. To do so we
construct the ensemble average field [5,30] by project-
ing many clusters (which were grown using the same
parameters but different seeds for the random number
generator). The contour lines of the ensemble average
field define the envelope. The dependence of the en-
velope shape on supersaturation is presented in Fig. 2.
For high supersaturation the envelope is almost circular.
For lower supersaturation the envelope tends to a square

shape, and as it decreases further thare is a transition
to a concave pattern. There is no general explanation
for the concave to convex transition. There is an ex-
planation for the occurrence of convex patterns at high
supersaturation and concave pattern: at low supersat-
uration for infinitely noise-reduced DI.A [31,32]. In this
case, at high supersaturation (A = 1) the model is equiv-
alent to the Eden model where the growth patterns are
all convex [33]. For a low level of supersaturation there
exists an analytical solution which is concave [34]. For
a quantitative geometric measure (whether the pattern
is convex or concave) one can use tte dynamical den-

sity p(t) = ﬁ,:ﬂai(t)% (where Rynq; is the distance from

the center of the cluster to the farthest point which be-
longs to the cluster). Since the growing cluster advances
at constant velocity (as shown below), the cluster den-
sity behind the growing front should be exactly equal

0
¢

FIG. 2. The ensemble averaged envelopes for four different
levels of supersaturation. It is an average over 200 realizations
each having a different seed for the random number generator.
We use the fact that the growing patterns symmetry reflects
the lattice anisotropy. Therefore we carn. average over the
fourfold symmetry and reveal a smooth :nvelope [6]. The
envelope shape changes from convex for A = 0.25 to concave
at A = 0.1. Three contour lines (0.1,0.2,0.3) are plotted for
each A.
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to A [25]. Therefore, for late stage asymptotic growth,
p(t) > 1 for convex patterns and p(t) < 1 for concave
patterns [10]. This quantity, while an important quanti-
tative measure, converges very slowly and requires large
scale simulations. It was checked in our system and found
to approach the right values.

As stated above, a correlation between the morphology
and the rate of propagation of the envelope was observed
in many systems. As the envelope shape is maintained
(and the growth velocity is not the same in the different
directions) we use the maximal growth velocity v(t) =

éR—";‘t’ﬂ as the envelope velocity. The asymptotic growth
velocity, v, is presented in Fig. 3 on a log-log scale. The
velocity scales with the supersaturation as o oc A288,
There is no detectable change of this scaling law as the
envelope changes from convex to concave (around A =
0.15) in agreement with the results of Ref. [7].

An additional characteristic of morphology transitions
is the change of the mesoscale ordering. A simple mea-
sure for such ordering is the distribution of the segment
lengths in the growing cluster. Here, we consider a seg-
ment to be a sequence of consecutive particles along a
straight line. Note that each particle which belongs to
the cluster is measured twice as being part of a segment
in the z direction and in the y direction. In Fig. 4 we
plot a histogram of the number of segments of length L
(which we denote as nr). That is, we define the frequency
of segments length as

L)y= zn:l;z

Each histogram is normalized by the total number of seg-
ments in the cluster. Surprisingly, the histograms coin-
cide for all levels of supersaturation A (note that the
data become noisy for large L as the frequency of such
an event is very small and numerical fluctuations become

(1)

E -, 2300 !
0.8 » 2000 .
04F « 1600 i
o 800
0.2 £ e 600 i
L 500 — 10
a
0.08 « 400 N
0.04 £
5 1 ¢
> 002 F 00
£ o * * 1
0.008 } — 100
0.004 £
0.002 £ s 1
9 slope=2.88 -
0.0008 - 1000
0.0004 F .
0.0002 E ]
’ cobo ! Il A RN EEEEE T I
0.02 0.04 0.060.08 0.2 0.4
A

FIG. 3. The asymptotic growth velocity ¥ and diffusion
length ¢ = 1/v (shown on the right axis), versus supersatura-
tion on a log-log scale. No traceable change in the scaling of
the velocity is observed as the pattern is changed from con-
vex (above A ~ 0.15) to concave (below A ~0.15). The point
style marks the system size.
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FIG. 4. Distribution of segments length rescaled by the
number of particles in the cluster on a semilogarithmic plot.
The distribution function is independent of the supersatura-
tion. The DLA distribution function is also the same as for
finite supersaturation.

important). To show the validity of this behavior for in-
finitesimally small A, we performed a simulation of on-
lattice DLA (where each particle is released sequentially
at infinity). The histogram of this case also coincides
with all the above histograms of finite A. This aspect
of the mesoscale organization is invariant under changes
of A, and is a basic feature of the growth process. Note
that for 0.2 < A < 0.45 the noiseless part of the distri-
bution (L < 10) includes segments of length larger than
the diffusion length (shown on the right hand side of Fig.
3). Moreover, preliminary observation shows that the
segment lengths distribution for a noise-reduced many-
walker DLA process [35] and for many-walker DLA on a
triangular lattice is also independent of the supersatura-
tion. However, the functional form of the distribution of
segment lengths in those cases differs from our g(L).

A simple and important consequence of the above
property is that the mass of the cluster can be expressed
as

1 1
M= Z E g((k)) (2)

for any value of k. We define G, = —2'9(—1(6% and find that,
for each value of k,

M

E]:r (3)

ne =

where G;, is a known quantity and is independent of A.
That is, one can relate the total mass to the number of
segments of each length and vice versa. This property
is also correct for parts of the cluster. Thus it seems
that this invariant property can be used as a hint for
an alternative mean-field description of the many-walker
DLA [36].

How can we understand the above observations and
the difference between them and the diffusion-transition
model? One possibility is that the change from convex
to concave envelope is indeed a morphology transition
similar to the one in the diffusion-transition model. We
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do not observe a simultaneous discontinuity of the veloc-
ity and mesoscale organization. However, as the whole
process depends strongly on stochastic noise, the above
quantities may be smeared and the transition cannot be
traced. Alternatively, the change in the envelope shape
may not be a morphology transition. It may be that a
change in the velocity scaling can be observed only when
one varies the thermodynamic driving force (the chem-
ical potential difference) between the two phases. As
the chemical potential difference in this system is infin-
ity (irrespective of A), we cannot find in this system a
morphology transition as a function of A. Moreover, the
fact that we observe a convex to concave change of the
envelope suggests that this property is not a sign for a
morphology transition. It may be a property of diffusive
patterning in two dimensions when anisotropy is present
which is manifested in the diffusion-transition model as a
morphology transition via the selection of tip-splitting or
dendritic growth out of the possible solutions. Here there
is no morphology transition as there is no competition
between two different solutions (similar to tip-splitting
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growth and dendritic growth in the diffusion-transition
model).

To conclude, this work calls for more studies of en-
velope vs velocity vs mesoscale organization, especially
when surface tension and noise reduction are included.
Also the segment lengths distribution is an intriguing tool
for experimental observation.
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